
Specification of Simplified Policy Description

Language(SPDL) ver 2.1.

Yuichi Nakamura ∗

November 13, 2006

Contents

1 Overview 3
1.1 Feature . 3
1.2 Overview of SPDL configuration elements 3
1.3 Default deny rule . 4
1.4 Terms . 4

2 Structure of configuration by simplified language 4
2.1 Syntax of section . 4

3 Import configuration from other file:include 5

4 Declare domain and role 5
4.1 Declare domain:domain . 5
4.2 Declare role:role . 5

5 Configure RBAC:user 5

6 Domain transition 6
6.1 Domain transition:domain trans 6
6.2 Simplified domain transition:program 6

7 Access control to normal files:allow/deny 7
7.1 allow . 7
7.2 deny . 9
7.3 Priority of allow, deny when conflict happens 10
7.4 Special files . 11
7.5 Notice about links . 11

7.5.1 Treatment of symbolic links 11
7.5.2 Treatment of hard links 12

∗himainu-ynakam@miomio.jp

1

8 Access control to devices:allowdev 13
8.1 allowdev(1) . 13
8.2 allowdev(2) . 13

9 Access control to files on misc file systems:allowfs 14

10 Access control to temporally file:allowtmp 15
10.1 Why allowtmp is necessary? . 15
10.2 What is allowtmp? . 16
10.3 Syntax and meaning . 16

11 Access control to network:allownet 17
11.1 Port usage . 18
11.2 Usage of RAW socket . 18
11.3 Usage of Network Interface(netif) and IP address(node) 18
11.4 Inherit socket from other domain 19

12 Access control of process communication:allowcom 20
12.1 allowcom (IPC) . 20
12.2 allowcom(Signal) . 20

13 Access control other administrative access rights:allowpriv 20
13.1 allowpriv: POSIX capability . 21

13.1.1 Capabilities that can not be configured 21
13.1.2 Configurable capabilities 21

13.2 allowpriv: related to kernel . 23
13.3 allowpriv: related to SELinux operations 23
13.4 allowpriv: other privileges . 24
13.5 denypriv . 24

14 Access control of kernel key retention service:allowkey 25

2

This document describes syntax and meaning of SPDL configuration ele-
ments.

1 Overview

Simplified policy is written in syntax called Simplified Policy Description Lan-
guage(SPDL). SPDL compiler(seedit-converter) converts SPDL into normal SELinux
policy language.

1.1 Feature

The feature of SPDL is hiding labels, and reducing number of permissions.

• Hiding labels
SPDL does not use types to configure access control. You can use file
name and port number to configure.

• Reduce number of permissions
There are too many permissions in SELinux, so SPDL reduces number of
permissions by removing permissions and integrating permissions. Per-
missions that does not have security impact is removed. Permission re-
moval is implemented by allowing that permission to all domains. In-
tegrating permission means, treating set of permissions as one permis-
sion. For example r permission for file integrates SELinux permissions
related to file read. For detail of what kind of permissions are removed,
integrated see Integrated/unsupported permissions in Simplified Policy in
http://seedit.sourceforge.net/doc/permission integrate/.

1.2 Overview of SPDL configuration elements

Configuration elements are following.

• Giving domain to applications
To assign domain, we have to configure domain transitions.

SPDL has two elements to configure domain transition: domain trans and
program . domain trans is syntax to configure domain transition, program
is syntax for simplified configuration.

• RBAC
SPDL supports RBAC. role and user elements do that.

• Access control to file
allow/deny are SPDL elements that enables to configure access control
to normal files. allowdev exists for device files, and allowtmp exists for
temporally(dynamically created) files.

• Access control to network
allownet does this.

3

• Access control to IPC
allowcom does access control to IPC and signal.

• Access control to other privilege
Other important OS operations that is not restricted above can be con-
figured by allowpriv.

1.3 Default deny rule

Domain and roles are denied all permissions unless allowed by SPDL.

1.4 Terms

• Domain
Domain is the same as domain in SELinux. It is attached to process by
domain transition.

• Role
Role in SPDL is simplified. Role is identified with a domain for user shell.
In SPDL, we describe access rights for role. In fact, it is giving access
rights for user shell of the role. For example, when you give access right
for sysadm r, access right is given to sysadm t(Domain for user shell of
sysadm r).
Note that in generated SELinux policy, all roles can type every types.
There is no syntax corresponding to role:x:types:y in simplified language.

• Unconfined domain
unconfined domain is a domain that is configured to be allowed everything.
If process is given unconfined domain, it is passes all SELinux permission
checks, so it runs the same as in normal Linux.

To configure unconfined domain allowpriv all; is used.

2 Structure of configuration by simplified lan-

guage

Configuration is composed of sections. In each section, access control for do-
mains/roles are described. Section begins with { and ends with }.

2.1 Syntax of section

{ (begin of section)
domain/role (declare domain or role, one domain or role can be declared in one
section)
users (This can be used only for role)
domain trans—program (Configure domain transition)

4

allow/deny—allowxx (Describe access control for files, access control for re-
sources other than file)
} (end of section)

3 Import configuration from other file:include

you can include configuration from other file by include statement. Syntax is
following.
include filename; The include path can be specified by -I option of seedit-
converter, by default it is /etc/seedit/policy/include.

4 Declare domain and role

4.1 Declare domain:domain

1. Syntax
domain domain name ;

2. Meaning
Declare domain. All configuration in a section is done for the declared
domain.

3. Constraints
Domain name must end with t. This statement can not be used twice in
one section.

4.2 Declare role:role

1. Syntax
role role name ;

2. Meaning
Declare role. role name is associated to user by using user statement as
shown below.

3. Constraints
role name must end with r. This statement can not be used twice in one
section.

5 Configure RBAC:user

1. Syntax
user user name;

5

2. Meaning
Define users who can use the role.

3. Example
{
role user r;
user root;
user ynakam;
....
Above means user root and ynakam can use user r.

4. Constraints
It can be used only section where role is declared.

6 Domain transition

6.1 Domain transition:domain trans

1. Syntax
domain trans parent domain filename-of-entrypoint;

2. Meaning
This defines how domain is assigned to process.

3. Example

{

domain httpd_t;

domain_trans initrc_t /sbin/httpd;

...

Above means that when process(domain: initrc t) executes /sbin/httpd,
/sbin/httpd runs as httpd t domain.

4. Note
Dynamic domain transition can be configured by omitting entry point.
For example, {
domain httpd t;
domain trans initrc t;

means, dynamic domain transition from initrc t to httpd t is allowed.

6.2 Simplified domain transition:program

1. Syntax
program path-to-program;

6

2. Meaning
By this, path-to-program is attached domain when launched from com-
mand line, and /etc/init.d scripts.That is to say, allow domain transition
from unconfined domain. However, domain transition from authentica-
tion program domain(such as domains for su,login,sshd) is not configured.
Which domains are regarded as authentication domain is configured in
authentication domain field in converter.conf.

3. Example
1)

{

domain httpd_t;

program /usr/sbin/httpd;

}

/usr/sbin/httpd is attached httpd_t domain when launched from command

line and /etc/init.d script.

4. Note
This element is intended to be used in relaxed policy. This will not mean
nothing in more strict policy where there is not unconfined domain.

7 Access control to normal files:allow/deny

7.1 allow

1. Syntax

(a) allow filename | label [r],[w],[x],[s],[o],[t],[a],[c],[e],[dx];

2. Meaning

(a) Allow access to file.

3. Specifying filename

• Wildcard
For filename directory/* and directory** can be used. For exam-
ple, /var/* means, all files in /var directory, and /var directory.
/var/** means, all files under /var, /var directory and files/dirs in
its child,child’s child... directories.

• Home directories
File name that starts with ˜ represents home directory(Not including
/root). For example, /public html means, /home/all users/public html.
But in role configuration, it is different, it means home directories for
users that can use role.

7

4. Meaning of permissions.

• r(Read)
Allows to read file

• w(Write)
Allows to write,create,delete file. Note that creation of device is not
allowed unless allowpriv devcreate is described.

• x(eXecute)
Allows to execute file.

• s(Search)
Search file tree. i.e. Get contents of directory. For file,means nothing.

5. Example
{
domain httpd t;
...
allow /var/www/** r,s;
....
httpd t is allowed to read all files and directories under /var/www and its
children.

6. Detailed configuration support
In addition to s,r,x,w permissions, permissions o,t,a,c,e can be used. Per-
mission w is divided into those permissions.

• o: Overwrite
Allows only writing file, not allow create,delete.

• t: seTattr
Allow modify attribute of file.

• a: Append
Allow append to file.

• c: Create
Allow to create file.

• e: Erase
Allow to delete file

7. Domain execute permission
dx permission means Domain Execute. If domain is defined for the pro-
gram, program is executed in new domain.

Example:

{

domain httpd_t;

program /usr/sbin/httpd;

8

allow /var/www/cgi-bin/test.cgi r,s,dx;

}

{

domain cgi_t;

program /var/www/cgi-bin/test.cgi;

allow

}

In this case, httpd t domain have dx permission to test.cgi. Domain is
defined below. So, test.cgi runs as different domain.

8. Limitation about home-directories
Deny statement for individual home directory does not work. For example,

deny /home/ynakam/public_html;

does not work.

7.2 deny

1. Syntax
deny filename;

2. Meaning
This is used to describe constraints for allow and, also used to cancel allow.

3. Example

(a) Example 1: Describe constraints

*In file constraints

deny /etc/shadow;

*In httpd_t.a

{

domain httpd_t;

include constraints;

allow /etc/* r,s;

}

By include constraints; configuration in file constrains is included .
So, the above configuration is the same as following.

{

domain httpd_t;

include constraints;

deny /etc/shadow;

9

allow /etc/* r,s;

}

This means, httpd t have r,s permission to files in /etc. But can not
access /etc/shadow. To allow access to /etc/shadow, allow /etc/shadow
r,s; should be described explicitly. Deny is useful to prevent miscon-
figuration.

(b) Example 2: Cancel allow

{

domain httpd_t;

allow /etc/* r,s;

deny /etc;

allow /etc/* r,s; is cancelled by deny /etc;

7.3 Priority of allow, deny when conflict happens

1. OR operation(When allow conflicts)
When allow rule conflicts, OR operation is applied.

• Example

domain foo_t;

allow /var/** r;

allow /var/** s;

foo t have r,s permission to under /var.

domain foo_t;

allow /var/run/* r;

allow /var/run/** w;

foo t have r permission to in /var. But for sub-directory(/var/run/xxx
etc), it has w permission.

• Conflict between child and parent

domain foo_t;

allow /var/** r;

allow /var/run/** w;

foo t have r permission to under /var(including subdir). For /var/run
, it has only w permission.

10

2. Cancel previous configuration(When allow/deny conflicts)
When allow and deny conflicts, configuration that appears later survives.

• Example

domain foo_t;

allow /foo/* r,s;

deny /foo/* ;

allow /foo/* r,s is cancelled.

domain foo_t;

deny /foo/* ;

allow /foo/* r,s;

deny /foo/* is cancelled.

domain foo_t;

allow /foo/bar/** r,s;

deny /foo/** ;

allow /foo/bar/** r,s is cancelled.

• Exception
However,

domain foo_t;

deny /foo/bar/**;

allow /foo/** r,s;

deny /foo/bar/** is not cancelled. To cancel deny, you have to de-
scribe allow for denied directory(in this case, allow /foo/bar some permission;)

7.4 Special files

Access to following files are special.

1. /dev/tty* /dev/pts /dev/ptmx, /dev/vcs*,/dev/vcsa*
If you write allow for those file, this does nothing. Access control to these
files must be done by allowdev.

2. /proc, /sysfs, /selinux, /dev/tmpfs
Allow to these files do nothing, because these files are mounted on filesys-
tems that do not support xattr. See allowfs. For /selinux see allowpriv
getsecurity.

7.5 Notice about links

7.5.1 Treatment of symbolic links

Configuration to file that contains symbolic link is ignored.
For example,
allow /etc/init.d/httpd r;
is ignored(init.d is symbolic link to rc.d/init.d).

11

7.5.2 Treatment of hard links

In Linux system, contents of file can be refered by multiple name using hard
link. Hardlink is rarely used recent distro, but you have to note about this if
you want to preserve security.
In SPDL, following rule exists about hard link.
If file has multiple hardlink, to access the file, you must specify originally exist-
ing file name.
For example, /etc/shadow and /var/chroot/etc/shadow is hardlinked, and /etc/shadow
exists originally, to access contents of /etc/shadow, you have to use file name
/etc/shadow. Configuration using /var/chroot/etc/shadow will be igonored. If
some domain(assume foo t) want to read /var/chroot/etc/shadow, you have to
configure allow /etc/shadow r;
Next, there is a question, what is criteria of file originally exist? Following is
answer.
In following, /etc/shadow and /var/shadow is assumed as hardlinked files.

1. If rule is described to one file, the file is treated as original.
Ex: allow /etc/shadow r; is described in some domain, but rules using
filename /var/shadow is not described, /etc/shadow is treated as original.

2. If rules are described to multiple hardlinked files, the filename that name
is the youngest is treated as original
Ex: allow /etc/shadow r, and allow /var/shadow r; are described in
some domains, /var/shadow is treated as original, because /var/shadow ¿
/etc/shadow.

3. If rules are not described for hardlinked files, the directory names that
hardlinks exist are compared. The file whose directory name is oldest is
original.
Ex: /etc/shadow, /var/shadow do not appear in any domain. Then
/var/shadow is treated as original. Because /var ¿ /etc.

If you are not sure which hardlinke is original, you can use all names. It means,
you can describe

allow /etc/shadow r;

allow /var/shadow r;

1 of 2 will be igored, and do no harm.
Above treatment of hardlink is necessary to avoid a kind of back door of

path name based configuration. Assume hard link to /etc/shadow is created by
some trick under /var/www/html, without this behavior, apache web server can
access contents of /etc/shadow via /var/www/html/shadow. To protect this,
we must limit way to access hard link to 1.
http://securityblog.org/brindle/2006/04/19 is good reference.

12

8 Access control to devices:allowdev

8.1 allowdev(1)

Device files must be handled carefully. Because device files are interface to
kernel. When device file is linked to driver that handles critical information,
read/write to such device will lead to leak of confidential information or break
of system. Following allowdev statements restricts access to device files.

1. syntax

(a) allowdev -root directory;

2. meaning
By default, when allow statement is described to file, access to device files
are not allowed. The directory that contains devices must be described in
advance, by allowdev -root.

3. Example

{

domain httpd_t;

allow /dev/* r,w;

In above, httpd t can access normal files under /dev, but can not access
device files.

{

domain httpd_t;

allowdev -root /dev;

allow /dev/* r,w;

In above, httpd t can access both normal files and devices under /dev.
However, in permission w, creation and remove devices are not granted
unless allowpriv devcreate is described.

8.2 allowdev(2)

tty devices are device files /dev/tty*, pts devices are devices under /dev/pts.
tty devices represents local login terminal, and pts devices represents terminal
in X and ssh terminal. These devices are linked to terminal when user logs in,
or open X/ssh terminal. If you can write other users terminal device files, you
can write message to his terminal. In SELinux environment, tty/pts device files
are given label according to login user’s role. So tty/pts device files should be
treated differently in SPDL.

13

1. syntax

(a) allowdev -pts—-tty—-allterm open;

(b) allowdev -pts—-tty—-allterm role [r],[w];

(c) allowdev -pts—-tty—-allterm role admin;

2. meaning
-tty means, tty devices. -pts means, pts devices. -allterms means both tty
and pts devices.

(a) This is usually used in role section. Allow role to have its own tty/pts
device. At the time of login, by login program, role’s tty device file
is given type role prefix tty device t.

(b) Allow to read/write role’s tty device.

(c) Allow to change label of tty device, and rename, unlink.

3. Special role

• general
this means tty/pts before labeled(The type is devtty t and tty device t,
devpts t, ptmx t). Usually, access to these are harmless except admin
permission.

• all
All other roles tty/pts

• vcs
This can be used only in allowdev -tty. Means vcs file(/dev/vcs*,
/dev/vcsa*), these provide access to screen-shot of tty terminal.

9 Access control to files on misc file systems:allowfs

SELinux can do fine-grained access control to files on filesystems that support
extended-attributes, such as ext3, ext2 and xfs. For such files, you configure
access control using allow statement. In other filesystems, you should configure
allowfs described in this section.

• Syntax

1. allowfs name of filesystem [s],[r],[x],[w];
For name of filesystem tmpfs sysfs autofs usbfs cdfs romfs ramfs dosfs
smbfs nfs proc proc kmsg proc kcore xattrfs can be used.

• Meaning

14

1. Allow access to files in specified system. For example, allowfs proc
s,r; means to grant s,r access to files on proc filesystem(/proc). When
you see logs whose types are filesystem t , you may have to use allowfs.
This means, if you find log about read access to sysfs t is denied, you
may add allowfs sysfs s,r;.

• Notice about name of filesystem

– proc filesystem
Access control to proc file system is a little fine-grained. proc kmsg
means, /proc/kmsg, proc kcore means /proc/kcore. proc pid self
means process information of own process in /proc/pid/. proc pid other
means process information for all others. proc means other files on
/proc.

– xattrfs
This means filesystem that supports extended-attribute, but not con-
figured to use SELinux’s label. For example, if you format USB
memory as ext3 on non-SELinux machine. Next you mount the USB
memory in SELinux machine, the files on it are recognized as xattrfs.
You have to use allowfs xattrfs permissions in such case.

– cdfs
This corresponds to iso9660 and udf filesystem.

– dosfs
This corresponds to fat, vfat, ntfs.

– smbfs
This corresponds to cifs and smbfs.

10 Access control to temporally file:allowtmp

10.1 Why allowtmp is necessary?

allowtmp is prepared to configure access control to temporally files. Before going
detail, let’s see why such configuration element is necessary. SELinux identifies
files based on inode, not file name. File name based configuration does not
work correctly when inode number changes or inode does not exist at the time
of configuration(typically such files are temporally files). Such files exist under
/var/run, /tmp, /var/tmp. For example, assume following configuration exists.

domain httpd_t

allow /var/run r,s;

allow /var/run/httpd.pid r,w,s;

At first, httpd t have r,w,s permission to /var/run/httpd.pid. However, when
httpd is restarted /var/run/httpd.pid is removed and created again. In this pro-
cess, inode number is changed. When inode number changes, it inherits parent

15

directory’s permission. i.e: httpd t have r,s permission to /var/run/httpd.pid(the
permission of /var/run). So to grant r,w,s permission to /var/run/httpd.pid,
r,w,s permission should be given to parent directory(/var/run). However, in
this configuration, httpd t can r,w,s other daemons pid files under /var/run.
In second example, when program creates files randomly under /tmp it is a prob-
lem. Assume program A(domain is a t) and program B(domain is b t) creates
files whose names are random under /tmp. In such case,following configuration
will be described.

{

domain a_t;

allow /tmp/** r,w;

}

{

domain b_t;

allow /tmp/** r,w;

}

This means, program A can access program B’s temporally files, and program
B can access program A’s temporally files.
In above example, access control configuration can not be described for indi-
vidual files, but for directory what such files belongs. If you think it is enough,
following will not necessary :-).

10.2 What is allowtmp?

To resolve this problem, SELinux has a feature called file type transition. al-
lowtmp is a feature to configure file type transition. In file type transition,
when domain creates files under some directory, created file is given a label.
The label can be named by policy. Following is example usage of allowtmp.

domain httpd_t;

allow /var/run r,s;

allowtmp -dir /var/run -name httpd_var_run_t; -(a)

allow httpd_var_run_t r,w,s; -(b)

In (a), when httpd t create file under /var/run, it is labeled as httpd var run t.
And in (b), httpd t can r,w,s access to the created file. To identify file using
label name(httpd var run t).

10.3 Syntax and meaning

1. Syntax

(a) allowtmp -dir directory -name label permission;

(b) allowtmp -fs file system name -name label permission; permission is
the same as file permission and can be omitted.

16

2. Meaning

(a) When domain create file under directory it is labeled as label and have
permission to the created file specified by permission. permission can
be omitted. When omitted, permission can be given by allow.

(b) This is used to configure allowtmp under files that do not support
extended attribute, currently, this can be used only for tmpfs.

(c) About label

• When label is auto , label is named automatically based on do-
main and directory. For example, domain is hoge t, and directory
is /var/, label name is hoge var t.

• When label is all or *, it means all files under directory created
using allowtmp.

3. Example

domain httpd_t ;

allowtmp -dir /var/run -name auto r,w;

Files created under /var/run by httpd t is labeled as httpd var run t and
httpd t can r,w,s access to such files.

domain httpd_t

allowtmp -dir /var/run -name auto r,w;

domain named_t

allowtmp -dir /var/run -name auto r,w;

domain initrc_t;

allowtmp -dir /var/run -name all r,w;

Files created under /var/run by httpd t is labeled as httpd var run t and
httpd t can r,w access to such files(named t can not access). Files created
under /var/run by named t is labeled as named var run t and named t can
r,w access to such files(httpd t can not access) initrc t can r,w access to
above files because -name all is specified. -name all is used to administrate
files created by allowtmp.

11 Access control to network:allownet

allownet statements is prepared to configure network access control. It can
configure access control to port , netif(Network Interface), node(IP address)
and inheritance of socket.

17

11.1 Port usage

1. Syntax
allownet -protocol protocol -port port number permission;
protocol: tcp,udp can be specified, splitted by ,.
port number: number and -1023 and 1024- , and * can be described,
splitted by ,.
permission: client or server splitted by , can be described

2. Meaning
Allow permissions to be TCP/UDP server/client using port. Port number
-1023 means, all unused ports under 1023. 1024- means all unused ports
after 1024. * means all ports.

3. Note about udp server
If you describe allownet -protocol udp -port xxx server; The domain also
behave as client to port number over 1024.

4. Example

domain httpd_t;

httpd_t can be server using port 80 and 443.

allownet -protocol tcp -port 80,443 server;

httpd_t can use TCP/UDP 3306 service(MySQL) as client.

allownet -protocol tcp,udp 3306 client;

11.2 Usage of RAW socket

Usage of RAW socket must be restricted, because RAW socket can be used for
IP spoofing and eavesdropping.

1. Syntax
allownet -protocol raw use;
permission: client or server or * splitted by , can be described.

2. Meaning
The domain is allowed to use RAW socket.

11.3 Usage of Network Interface(netif) and IP address(node)

Usage of netif/node is allowed by this. In default policy, it is allowed to all
domains.

1. Syntax

(a) allownet -protocol protocol -netif name of NIC permission;
protocol: tcp,udp,raw and * can be specified, splitted by ,.
name of NIC: NIC name(such as lo,eth0,eth1) splitted by ,.
permission: send or recv splitted by , can be described.

18

(b) allownet -protocol protocol -node address permission;
protocol: tcp,udp,raw and * can be specified, splitted by ,.
address: ipv4address/netmask or * splitted by ,. Example: 192.168.0.1/255.255.255.0
. And * means all address.
permission: send or recv splitted by , can be described.

2. Meaning

(a) Allows to send or receive packet to/from NIC.

(b) Allows to send or receive packet to/from IP address.

3. Example

{

domain httpd_t;

allownet -protocol tcp use;

allownet -protocol tcp -port 80 server;

allownet -netif eth0 send,recv;

}

--> httpd_t can use tcp socket and be server using TCP 80 port.

And can send/recv packet to/from eth0.

11.4 Inherit socket from other domain

Following syntax allows using socket of other domain. It is rare to configure.

1. Syntax

(a) allownet -protocol protocol -domain domain use; protocol, tcp,udp can
be specified, splitted by ,.

2. Meaning

(a) This enables to restrict inheriting socket from other domain. This
configures from where the domain can inherit socket. When domain
is self, the domain can use socket which is created by its own domain.

3. Example

domain foo_t;

foo_t can inherit UDP socket from bar_t

allownet -protocol udp -domain bar_t;

19

12 Access control of process communication:allowcom

12.1 allowcom (IPC)

1. Syntax
allowcom -ipc|-unix|-sem|-msg|-msgq|-shm|-pipe to domain [r],[w];

2. Meaning
Allow to communicate with to domain by specified IPC.
If to domain is self, this means IPC within domain. If to domain is *
the domain can IPC to every domain. -ipc is allowing all kinds of IPCs, it
is simplified configuration. If you want to specify specific kind of ipc, you
can use following. -unix is unix domain socket, -sem is semaphore, -msg
is message, -msgq is message queue, -shm is shared memory, -pipe is pipe.

12.2 allowcom(Signal)

1. Syntax
allowcom -sig to domain [c],[k],[s],[n],[o];

2. Meaning
Allow to send signal to to domain. [c] is sigchld, [k] is sigkill, [s] is sigstop,
[n] is signull, [o] is other signals.

13 Access control other administrative access
rights:allowpriv

• Syntax
allowpriv string;
string is name of privilege. It is described in next section.

• Meaning
Allow access rights represented by string.

Next, what can be configured for string can be categorized into following.

• POSIX capability

• Related to kernel

• Related to SELinux operations

• Others

20

13.1 allowpriv: POSIX capability

Strings that begin with cap is POSIX capability. You can see detailed meaning
by man capabilities.

13.1.1 Capabilities that can not be configured

Following POSIX capabilities can not be configured, because it can be config-
ured in different place.

• CAP NET BIND SERVICE
This restricts usage of wellknown ports, but by allownet, you can configure
better. So this is omitted.

• CAP MKNOD
This is allowed in allowpriv devcreate.

• CAP AUDIT WRITE
Operations that is restricted by this is the same as allowpriv audit write
,so this is omitted.

• CAP AUDIT CONTROL
Operations that is restricted by this is the same as allowpriv audit control,
so this is omitted.

13.1.2 Configurable capabilities

• cap sys pacct
Configures kernel accounting(see acct(2)).

• cap sys module
Allows to install kernel module.

• cap net admin
Allow capability CAP NET ADMIN(Such as administrate NIC, route ta-
ble).

• cap sys boot
Allow capabilityCAP SYS BOOT. This means allow the usage of reboot
system call.

• cap sys rawio
Allow capability CAP SYS RAWIO.This means usage of ioperm, iopl sys-
tem call and access to /dev/mem.

• cap sys chroot
Allow to use chroot.

• cap sys nice
Allow capability CAP SYS NICE. This means process scheduling.

21

• cap sys resource
Allow capability CAP SYS RESOURCE. This means usage of rlimit etc.

• cap sys time
Allow capability CAP SYS TIME. Thie means modify system clock.

• cap sys admin
The same as POSIX capability CAP SYS ADMIN. This permissions over-
laps other permissions, so if you allow this, not so serious problem. By
denying this, it can restrict sethostname and some ioctl operations.

• cap sys tty config
The same as capability CAP TTY CONFIG. Change keyboard configu-
ration, and usage of vhangup call.

• cap ipc lock
Allow capability CAP IPC LOCK. This means to lock memory.

• cap dac override

• cap dac read search

• cap setuid

• cap setgid

• cap chown

• cap setpcap

• cap fowner

• cap fsetid

• cap linux immutable

• cap sys ptrace

• cap lease

• cap ipc owner

22

• cap kill

13.2 allowpriv: related to kernel

Configures privileges to communicate and administrate kernel. Following strings
can be used.

1. netlink
Allows to communicate with kernel by netlink socket.

2. klog read
Allows to read kernel messages by syslog(2) call. Usually it is required to
use dmesg command.

3. klog adm
Allows to change configuration of kernel message output.

4. audit read
Allows to read status and configuration of kernel audit subsystem.

5. audit write
Allows to send log message to audit subsystem in kernel.

6. audit adm
Change configuration of kernel audit subsystem.

13.3 allowpriv: related to SELinux operations

Allow privileges to administrate SELinux.

1. relabel
Allow to relabel all files. You must also allow getsecurity and allowpriv
search.

2. part relabel
Allow to relabel files that the domain can write. You must also allow
getsecurity.

3. setfscreate
This is necessary only applications that use SELinux API(setfscreatecon).

4. getsecurity
Allow to get security policy decisions, by accessing /selinux.

5. setenforce
Allow to toggle enforcing/permissive mode.

6. load policy
Allow to load policy to kernel.

23

7. setsecparam
Change performance parameter of SELinux via /selinux/avc

8. getsecattr
Get security information(such as domain, stored in /proc/pid/attr) of
other processes.

13.4 allowpriv: other privileges

Allow other privileges.

1. quotaon
Allow to quotaon.

2. mount
Allow to mount device.

3. unlabel
Allow full access to unlabeled files(Files labeled as unlabeled t).

4. devcreate
Allow to create device files in directory that the domain can write. With-
out this, a process can not create device file on a directory even it is
configured writable.

5. setattr
Allow to setattr to files that the domain can s access. Without this setattr
permission is granted in w permission.

6. search
Allow s permission to all files.

7. read
Allow r permission to all files.

8. write
Allow w permission to all files.

9. all

13.5 denypriv

This can be used to cancel allowpriv configuration.

24

14 Access control of kernel key retention ser-
vice:allowkey

This feature is included at version 2.1 or later.

After Linux 2.6.18, new feature kernel key retention service) is included. By
the feature, each process can obtain key. For detail of key retention service,
please refer to kernel document Document/keys.txt (You can look at the copy
at http://free-electrons.com/kerneldoc/latest/keys.txt). allowkey controls ac-
cess to key. This feature is effective only for FC5 or later. Cent OS does not
have kernel key subsystem, so allowkey means nothing.

1. Syntax
allowkey domain permissions;
For permissions, you can use following.
v: View. Look attribute of key.
r: Read. Read contents of key.
W: Write. Write contents of key.
s: Search. Search keyrings.
l: Link. Permits key or keyrings to be linked to.
t: Set Attribute: Set attribute of key.
For detail of permission, see Document/keys.txt.

2. Meaning
Allow access to keys retained by domain.
For example,
allowkey login t v,r;
means, allow view and read access to keys, obtained by process whose
domain is login t.

25

