
Meaning of permissions in SELinux(Ver 1)

Yuichi Nakamura ∗

January 12, 2006

Contents

1 Introduction 3

1.1 About this document . 3
1.2 Terminology and notation . 3
1.3 Motivation . 3

2 Analysis method 3

3 Meaning of permissions 4

3.1 permissions related to files . 4
3.1.1 Object classes . 4
3.1.2 permissions common to object classes related to file . . . 4
3.1.3 permissions specfic to object class file, blk file 6
3.1.4 permissions specific to dir 6

3.2 permissions related to sockets . 6
3.2.1 Object Classes . 6
3.2.2 permissions common to sockets 8
3.2.3 Object class netlink socket, packet socket, key socket ,unix dgram socket

10
3.2.4 Object class unix stream socket 10
3.2.5 Object class tcp socket 10
3.2.6 Object class udp socket, rawip socket 11
3.2.7 Object class netlink nflog socket, netlink selinux socket and

netlink dnrt socket . 11
3.2.8 Object class netlink audit socket 11
3.2.9 netlink route socket . 11
3.2.10 Object class netlink firewall socket 11
3.2.11 Object class netlink tcpdiag socket 12
3.2.12 netlink xfrm socket . 12
3.2.13 Object class netlink ip6fw socket 12

∗The George Washington University, ynakam@gwu.edu

1

3.3 permissions related to other network elements 12
3.3.1 Object class netif . 12
3.3.2 Object class node . 13

3.4 permissions related to IPC . 13
3.4.1 Object classes . 13
3.4.2 permissions common to all ipc object classes 14
3.4.3 Object class msgq . 15
3.4.4 Object class msg . 15
3.4.5 Object class sem . 15
3.4.6 Object class shm . 15

3.5 Object class capability . 16
3.6 Object class fd . 19
3.7 Object class filesystem . 19
3.8 Object class process . 20
3.9 Object class security . 21
3.10 Object class system . 22

2

1 Introduction

1.1 About this document

Meaning of SELinux’s permissions(operations that are restricted by permis-
sions) are analyzed and shown in this document. For feedback, please send
e-mail to ynakam@gwu.edu.

1.2 Terminology and notation

• Notation
read(2) means, you should refer to Linux man pages. This example means
man 2 read.

• Access vector permission
The term Access vector permission means, permission defined in SELinux(such
as read,write,send msg). Access vector permission is often called simply
permission in this document. The usage of the term is from [5].

1.3 Motivation

The design SELinux Policy Editor[1] is based on non-LSM based SELinux re-
leased at the time of Jan 2003. After that SELinux is re-implemented using
LSM. As a result, meaning of access vector permissions had been changed, and
many permissions are added. Before re-designing SELinux Policy Editor, we
have to understand the meaning of permissions. However, the meaning of them
is not well documented. [2] is a good documentation of implementing SELinux,
but the meaning of access vectors are not fully covered. [3] is a quick reference
of permissions, but the description is short. Therefore, I decided to analyze the
meaning of all permissions.

2 Analysis method

The version of SELinux used is that in Linux kernel 2.6.13. Analysis of permis-
sions are based on source code analysis of Linux 2.6.13. The process is following.

(1) Find value corresponding to the permission from security/selinux/include/
av permissions.h
In av permissions.h, permission is defined as a constant value. For exam-
ple, when we want to analyze permission read for object class file. We can
find following in av permissions.h.

#define FILE__READ 0x00000002UL

(2) Analyze how the constant is used.
In the example above, we analyze how FILE READ is used in source
code. And find out how the permission is checked. lxr [4] is useful.

3

In some cases above process is not enough.

• Object class capability
For permissions in object class capability, constants CAPABILITY * are
defined in av permissions.h. However, we can not find such constants in
source code. We tend to think those are not checked, but they are actually
checked. They are checked in capable Linux function. Let’s see permission
cap sys admin as an example. The permission is checked in the statement
capable(CAP SYS ADMIN), then selinux capable and task has capability
are called, and permission cap sys admin is checked. In the check, values
defined in av permissions.h do not appear explicitly.

• Object classes related to files and sockets
In these object classes, some permissions are inherited from object class
file. We have to pay attention to analyze them. Such permissions use
value FILE *. For example, when we analyze permission read in ob-
ject class tcp socket, read permission is inherited from file. We can find
TCP SOCKET READ in av permissions.h. However, we have to also
analyze the behavior of FILE READ.

3 Meaning of permissions

3.1 permissions related to files

In the following subsection, operations restricted by permissions are described.

3.1.1 Object classes

Object classes related to file are summarized in Table 1.

Table 1: Object classes related to file

Object class For what kind of file?
file Normal file
blk file Block device file
chr file Character device file
fifo file Special file for FIFO
lnk file Symbolic link
sock file Special file for Unix domain socket
dir Directory

3.1.2 permissions common to object classes related to file

• ioctl
Control attribute of device. It is checked in ioctl(2).

4

• read
Read file. It is checked in read(2).

• write
Write to file. It is checked in write(2).

• create
Open and create new file, directory and symbolic link.

• getattr
Get file attribute (such as last modified). It is checked in stat(2).

• setattr
Modify file attribute. It is checked in kernel functions that changes file
attribute.

• lock
Lock file. It is checked in flock(2) and fcntl(2)

• relabelfrom, relabelto
Relabel file. When domain A relabel file whose type is B to type C. A
must have relabelfrom to B and relabelto to C.

• append
Append to file. It is checked when opening file as append mode.

• unlink
Delete file. It is checked in unlink(2).

• link
Create hard link. When domain A want to create hard link for file whose
type is B, A must have link permission to B.

• rename
Rename file. It is checked in rename(2). rename(2) is used in such as mv
command.

• execute
Execute file with domain transition. Link shared library.

• swapon
It is not used. It is defined in SELinux source as FILE SWAPON but not
used. Originally, it controlled swapon system call, but this was dropped
when merged into mainline Linux kernel. For domain A to do swapon
system call successfully, A need getattr read and write permissions. So
without swapon permission, swapon system call can be restricted.

• quotaon
Enable quota to disk device file. It is checked in quotactl(2)(Q QUOTAON
flag).

5

• mounton
Use directory as a mount point. It is checked in mount(2).

3.1.3 permissions specfic to object class file, blk file

• execute no trans
Execute file without domain transition.

• entrypoint
Use file as a entry point for domain transition.

• execmod
Attempt to load executable in specific condition. The condition is quoted
from [2] below. It first checks whether the caller is attempting to make
executable a file mapping that has had some copy-on-write done, indicating
that it may include modified content. If so, then the hook function performs
a file execmod permission check.

3.1.4 permissions specific to dir

• add name
Add entry to directory. It is checked in rename(2) and link(2).

• remove name
Remove entry from directory. It is checked in unlink(2).

• reparent
Change parent directory. It is checked in rename(2).

• search
When opening file and directory or changing directory, search permission
is checked. search is checked to all ancestor directories. For example,
when cd /etc/selinux/seedit/ command(suppose the domain is foo t) is
run, search is checked to /, /etc, /etc/selinux and /etc/selinux/seedit.

• rmdir
Remove directory. It is checked in rmdir(2).

3.2 permissions related to sockets

3.2.1 Object Classes

In SELinux,object classes are related to sockets. SELinux categorizes sockets by
protocol family and type. protocol family is domain and type is type in socket
system call 1. Table 2 shows relationship between object class, protocol family
and type.

The short description of each sockets are below.

1See man socket(2)

6

Table 2: Object classes related to socket, partly quoted from [2]

Object class Protocol Family Type
tcp socket PF INET, PF INET6 SOCK STREAM
udp socket PF INET, PF INET6 SOCK DGRAM
rawip socket PF INET, PF INET6 SOCK RAW
unix stream socket PF UNIX SOCK STREAM
unix dgram socket PF UNIX SOCK DGRAM
packet socket PF PACKET all
key socket PF KEY all
netlink route socket PF NETLINK NETLINK ROUTE
netlink firewall socket NETLINK FIREWALL
netlink tcpdiag socket NETLINK TCPDIAG
netlink nflog socket NETLINK NFLOG
netlink xfrm socket NETLINK XFRM
netlink selinux socket NETLINK SELINUX
netlink audit socket NETLINK AUDIT
netlink ip6fw socket NETLINK IP6 FW
netlink dnrt socket NETLINK DNRTMSG
netlink kobject uevent socket NETLINK KOBJECT UEVENT
netlink socket ALL other types
socket all sockets unmatched above

• tcp socket, udp socket
These are trivial, TCP and UDP socket.

• rawip socket, packet socket
These are related to socket to send raw packets. These can be used by
attacker to create fake packet.

• unix stream socket& unix dgram socket
These are unix domain socket, socket to communicate with processes in
the same machine.

• netlink*socket
These are related to netlink socket. Netlink socket is a socket to commu-
nicate with kernel.

• key socket
This is a socket used for IPSEC.

• socket
Sockets that does not match all of above. From socket(2), unmatched

7

sockets will be those whose protocol family are PF IPX(IPX-Novell proto-
cols), PF X25(ITU-T X.25 /ISO-8208 protocol), PF AX25(Amateur radio
AX.25 protocol), PF ATMPVC(Access to raw ATM PVCs) and PF APPLETAL(Appletalk).

3.2.2 permissions common to sockets

• relabelfrom, relabelto
These permission is defined, bot not used.

• Target type is domain who created socket
For following , target type is domain who created socket.

– read
Read data from socket. This is checked in system call recvmsg. In
other system calls related to socket read(such as recvfrom), recvmsg
call are internally used.

– write
Write data to socket. This is checked in system call sendmsg. sendmsg
is internally used in other system calls related to socket write.

– create
Create socket. This is checked when socket is created.

– getattr
Get name of socket by getsockname and getpeername system call.

– bind
Usage of bind system call. bind system call is to give name to socket.

– connect
Usage of connect system call. connect system call is used to initiate
network connection

– listen, accept
Usage of listen and accept system call. These calls are used to wait
network connection.

– getopt
Get socket option by getsockopt system call.

– setopt
Set socket option by setsockopt system call.

– shutdown
Terminate connection by shutdown system call.

– ioctl
Set and get attribute of socket by ioctl system call.

– append
open socket with O APPEND option,but it does not make sense for
socket.

8

– lock
Lock file descriptor for socket by flock and fcntl system call.

– setattr
Set inode attribute of socket.

As an example, let’s see when a t domain communicate b t domain by
TCP. For convenience of explanation, we see only create and write per-
missions.

(1) a t domain process open TCP socket, and establish connection with
process whose domain is b t
TCP socket is created, and create permission is checked. The created
socket has type a t. allow a t a t:tcp socket create; is necessary to
allow it.

(2) a t domain write data to socket.
write permission is checked. allow a t a t:tcp socket write; is neces-
sary to allow this operation. Note that target type is not b t, because
type of socket which a t is writing is a t.

• Target type is domain of peer socket

– sendto
Connect by connect call and send data by sendmsg call. Note that
this permission is checked only in unix data gram socket.

The target type of above permission is domain of peer socket. For exam-
ple, when domain a t want to send data to domain b t, permission check
is done using domain:a t, type:b t, objectclass:unix dgram socket, permis-
sion:sendto . This means communication between domains are checked.
To allow this

allow a_t b_t:unix_dgram_socket sendto;

must be described in policy.

• Target type is port
In following permissions, type of port is used as target type. In SELinux,
port numbers are labeled.

– name bind
Open port.

– recv msg
Receive data from port. This is checked in kernel function processing
incomming data. Target type is type of source port.

– send msg
Send data to port. Target type is type of destination port.

9

For example, When a t domain want to receive data from peer whose port
is tcp 80(assuming type is http port t),

allow a_t httpd_port_t:tcp_socket recv_msg;

must be specified.

3.2.3 Object class netlink socket, packet socket, key socket ,unix dgram socket

For these object classes, all permissions are the same as those specified in section
3.2.2.

3.2.4 Object class unix stream socket

In addition to permissions in 3.2.2, following are defined. These permissions are
checked between subject domain and domain of peer.

• connectto
Connect to peer by connect system call

• newconn
This is not used. Defined as UNIX STREAM SOCKET NEWCONN,
but not actually used.

• acceptfrom
This is not used. Defined as UNIX STREAM SOCKET ACCEPTFROMN,
but not actually used.

3.2.5 Object class tcp socket

In addition to permissions in 3.2.2, following are defined.

• connectto
Defined as TCP SOCKET CONNECTTO, but not used.

• newconn
Defined as TCP SOCKET NEWCONN but not used.

• acceptfrom
Defined as TCP SOCKET ACCEPTFROM but not used.

• node bind
Name socket by bind system call. Target type is type of node(Network
address).

• name connect Begin network connetion by connect system call. Target
type is port number.

10

3.2.6 Object class udp socket, rawip socket

In addition to permissions in 3.2.2, node bind is defined. The meaning of
node bind is the same as that of tcp socket.

3.2.7 Object class netlink nflog socket, netlink selinux socket and

netlink dnrt socket

permissions are the same as 3.2.2.

3.2.8 Object class netlink audit socket

In addition to permissions in 3.2.2, following permissions are defined. These
permissions are checked when sending message to CAPP(Controlled Access Pro-
tection Profile)[8] audit system.

• nlmsg read
Send message to query the status of LauS.

• nlmsg write
Send message to change configuration of LauS.

• nlmsg relay
Send user space log message to LauS.

• nlmsg readpriv
Send message to obtain configuration of LauS.

3.2.9 netlink route socket

netlink route socket is used to restrict access to netlink socket that is used to
configure kernel routing table. In addition to permissions in 3.2.2, following
permissions are defined.

• nlmsg read
Send messsage to request to read kernel routing table.

• nlmsg write
Send message to request to write kernel routing table.

3.2.10 Object class netlink firewall socket

This object class is to control access to IPv4 firewall. In addition to permissions
in 3.2.2, following permissions are defined.

• nlmsg read
This is defined but not used.

• nlmsg write
Send message whose mode is IPQM VERDICT or IPQM MODE defined
in ip queue.h.

11

3.2.11 Object class netlink tcpdiag socket

netlink tcpdiag socket is used to restrict usage of netlink socket for network
monitoring kernel module enabled by CONFIG IP TCPDIAG kernel compile
option.

In addition to permissions in 3.2.2, following permissions are defined.

• nlmsg read
Send message requesting to get infomation about TCP and DCCP proto-
col.

• nlmsg write
This is defined but not used.

3.2.12 netlink xfrm socket

netlink tcpdiag socket is used to restrict usage of netlink xfrm socket to config-
ure IPSEC.In addition to permissions in 3.2.2, following permissions are defined.

• nlmsg read
Send message to request to read IPSEC parameter.

• nlmsg write
Send message to request to set IPSEC parameter.

3.2.13 Object class netlink ip6fw socket

This object class is defined, but not used.

3.3 permissions related to other network elements

3.3.1 Object class netif

Following permissions are defined. In these, target type is network interface2.

• tcp recv
This is checked when tcp socket receives data from network interface.

• tcp send
This is checked when tcp socket sends data to network interface.

• udp recv
This is checked when udp socket receives data from network interface.

2SELinux labels network interface.

12

• udp send
This is checked when udp socket sends data from network interface.

• rawip recv
This is checked when raw socket(RAW socket and packet socket) receives
data from network interface.

• rawip send
This is checked when raw socket sends data from network interface.

3.3.2 Object class node

Following permissions are defined. In these, target type is network node(IP
address).

• tcp recv, tcp send, udp recv,udp send, rawip recv, rawip send
The same as those in class netif except target type is type of node.

• enforce dest
Defined as NODE ENFORCE DEST but not used.

3.4 permissions related to IPC

3.4.1 Object classes

• ipc
Defined SECCLASS IPC,but not used.

• msgq
IPC message queue. SELinux labels msgq. The type is the same as doamin
of creating process.

• sem
IPC semaphore.SELinux labels semaphore msgq. The type is the same as
doamin of creating process.

• shm
IPC shared memory. SELinux labels shared memory. The type is the
same as domain of creating process.

• msg
Message used in message queue. SELinux labels message. The type is the
same as message queue to which a process is going to send to msgq.

13

3.4.2 permissions common to all ipc object classes

• create
Create IPC object.

• destroy
Destroy IPC object by shmctl(option IPC RMID).

• getattr
Get information about IPC by shmctl, msgctl and semctl (option IPC STAT)

• setattr
Change attributie of IPC object by shmctl,msgctl and semctl(option IPC SET)

• read
Meaning of this is different depending on object class.

– shm
Attach shared memory to process by using shmat SHM RDONLY
option.

– msgq
Read message from message queue.

– sem
Get value of semaphore by semctl(GETALL option) and semop.

• write
Meaning of this is different depending on object class.

– shm
Attach shared memory to process by shmat not SHM RDONLY op-
tion.

– msgq
Send message to message queue.

– sem
Change value of semaphore by semctl(SETALL option) and semop.

• associate

– sem
In addition to operations restricted by getattr, get id by semget.

– shm
In addition to operations restricted by getattr, get id by shmget

– msgq
Get id by msgget

14

• unix read
Operations that read ipc object. This is checked when ipcperms kernel
function(with S IRUGO flag) is called. ipcperms function with S IRUGO
flag is called when ipc object is read.

• unix write
Operations that write or modify ipc object. This is checked when ipcperms
kernel function(with S IWUGO flag) is called. ipcperms function with
S IWUGO flag is called when ipc object is written or modified.

3.4.3 Object class msgq

In addition to permissions common to IPC, enqueue is defined.

• enqueue
This is the same as write.

3.4.4 Object class msg

There are only two permissions in msg. Object classes common to IPC are not
used.

• send
This is the same as write of msgq, except that target type is type of
message.

• receive
This is the same as read of msgq, except that target type is type of mes-
sage.

As a target type type of message is used above. However, by default, type of
message is the same as type of msgq. So, above permissions are same as write
and read for msgq.

3.4.5 Object class sem

permissions are the same as those common to IPC.

3.4.6 Object class shm

In addition to permissions common to IPC, lock is defined.

• lock
Lock shared memory by shmctl with SHM LOCK or SHM UNLOCK op-
tion.

15

3.5 Object class capability

• chown
Change owner of file by chown.

• dac override
Skip ordinary Linux’s permission check(DAC).

• dac read search
Skip ordinary Linux’s permission check about read and directory search.

• fowner

– Skip permission check in chmod and utime

– Change acl(Posix ACL)

• fsetid
Some operations related to setuid.Quoted from capabilities(7): Don’t clear
set-user-ID and set-group-ID bits when a file is modified; permit setting of
the set-group-ID bit for a file whose GID does not match the file system
or any of the supple- mentary GIDs of the calling process.

• kill
Skip permission check about kill. The same as CAP KILL

• setgid
Change GID for process and socket. Quoted from capabilities(7):Allow ar-
bitrary manipulations of process GIDs and supplementary GID list; allow
forged GID when passing socket credentials via Unix domain sockets.

• setuid
Change UID for process and socket. The same as CAP SETUID. Quoted
from capabilities(7):Allow arbitrary manipulations of process UIDs (se-
tuid(2), etc.); allow forged UID when passing socket credentials via Unix
domain sockets.

• setpcap
Change capability. The same as CAP SETPCAP. Quoted from capabili-
ties(7):Grant or remove any capability in the caller’s permitted capa- bility
set to or from any other process.

• linux immutable
Set immulable flag on files that support immutable flag. The same as
CAP LINUX IMMUTABLE.

• net bind service
Bind well known port. The same as CAP NET BIND SERVICE.

16

• net broadcast
Not used.

• net admin
The same as CAP NET ADMIN. Quoted from capabilities(7):Allow var-
ious network-related operations (e.g., setting privi- leged socket options,
enabling multicasting, interface configu- ration, modifying routing tables).

• net raw
Use raw and packet sockets.

• ipc lock
Memory lock using mlock, mlockall, shmctl. The same as CAP IPC LOCK.

• ipc owner
Skip permision check about IPC. The same as CAP IPC OWNER.

• sys module
Load and unload kernel module. The same as CAP SYS MODULE.

• sys rawio
Manipulate I/O port by iopl and ioperm. Access /proc/kcore. The same
as CAP SYS RAWIO.

• sys chroot
Use chroot system call.

• sys ptrace
Use ptrace to all processes.

• sys pacct
Obtain log of process by acct(2).

• sys admin
It grants many operations.

– Usage of following system call: quotactl, mount, umount, swapon,
swapoff, sethostname, setdomainname

– Set attribute to all IPC objects(IPC SET)

– Delete all IPC objects(IPC RMID)

– Set extended security attibute for file system.

– Use fake UID as socket credential.

– Can open more file than limits in /proc/sys/fs/file-max.

– Allocate memory using space reserved for priviledged process.
It is checked in security vm enough memory LSM hook function. se-
curity vm enough memory LSM hook is called in case such as when
process is created. The operation is not audited in SELinux.

17

– Get/set xattr trusted attribute
Xattr trusted attribute is not used for current SELinux.

– Some ioctl operations
Developpers of drivers check this capability in some option of ioctl.
The check is inserted by developper of driver in place where he thinks
important.

• sys boot
Reboot by reboot(2). However, it does not restrict reboot by writing
/dev/initctl.

• sys nice
Increase nice and change nice for other processes.

• sys resource

– Ignore hardlimit for resource usage in rlimit

– Increase hardlimit for resoure usage in rlimit.

– Use reserved space in ext2 file system

– Modify journal data flag for ext3 by ioctl

– Ignore limit related to message queue in /proc/sys/kernel/msgmnb

• sys time
Modify system clock.

• sys tty config
Close control terminal by vhangup(2). Change configuration of termi-
nal(such as keycode) by ioctl(such as KDSKBENT, KDSKBSENT op-
tion).

• mknod
Create device file by mknod.

• lease
Set lease by fcntl system call. Lease is a kind of lock.When a process
sets lease to file, not only file is locked but also signal is sent when other
process accesses the file. To use lease, file:lock should also be allowed.

• audit write
Send user space AVC message to kernel. User space AVC message is not
used in currently SELinux.

• audit control
Change configuration of Linux Auditing subsystem(LauS)[7] To change
/proc/self/loginuid.

18

3.6 Object class fd

• use

– Inherit file descriptor when process is executed and domain has been
changed.

– Receive fd from another process by Unix domain socket3.

– Get and set attribute of file descriptor,such as owner and flag by fntl
and ioctl.

3.7 Object class filesystem

SELinux labels superblock of filesystem. permissions in object class filesystem
is used for access control to superblock.

• mount
Mount filesystem.

• remount
Remount existing mount by MS REMOUNT option of mount(2).

• unmount
Unmount filesystem.

• getattr
Obtain statistics about filesystem, such as free block by statfs(2).

• associate
Use type as label for files. A type can not be labeled to file unless the type
is not associated to file. For example, when we want to use homepage t to
/var/www, and ext3 filesystem is labeled as fs t, then, allow homepage t
fs t filesystem: associate; must be described in policy.

• quotaget
Get quota information .

• quotamod
Modify quota by quotactl(2).

• relabelfrom,relabelto,transition
These are defined in source but are not used.

3When creating unix domain socket, by setting SCM RIGHTS flag, file descriptor can be
sent, see man unix(7).

19

3.8 Object class process

permissions in object class are prepared to restrict operations between process.
Unless specified, target type is domain of peer process.

• fork
Create new process by fork(2). Target type is the domain itself.

• transition
Do domain transition.

• sigchld, sigkill, sigstop, signull, signal
Send signal. sigchld is for SIGCHLD, sigkill is for SIGKILL, sigstop is
for SIGSTOP and signull is for signal number zero. signal is for other
signals.

• ptrace
Trace process by ptrace(2).

• getsched
Read scheduling information of process(such as nice value). Session ID is
used for job control by shell.

• setsched
Modify scheduling information of process.

• getsession
Get session ID of process.

• getpgid
Get process group ID. Process group ID is used for job control by shell.

• setpgid
Modify process group ID.

• getcap
Get capability information of process by capget(2).

• setcap
Modify capability information of process by capset(2).

• share
Execute process with domain transition after clone system call.

• getattr
Read process security information(such as what domain is given) in /proc/pid/attr.

• setexec
Set security context of executed process by writing /proc/self/attr/exec
or by setexecon system call.

20

• setfscreate
Set security context of created file by writing /proc/self/attr/fscreate or
setfscreatecon system call.

• noatsecure
This permission is used for glibc’s extended mode(secure mode). When
this permission is denied, glibc secure mode is enabled(if secure mode
exists).

• siginh
Inherit signal state(such as signal handler) from parent process. This is
checked when domain has been changed. The default behavior of Linux
is to inherit signal state(signal handler is not inherited in exec), but by
denying this permission, we can restrict inheriting signal state. If this is
denied, signal state is cleared.

• setrlimit
Change rlimit information(resource usage limit) by setrlimit(2).

• rlimitinh
Inherit rlimit information(resource usage limit information) from parent
process.This is checked when domain has been changed. The default be-
havior of Linux is to rlimit information, but by denying this permission,
we can restrict inheriting rlimit information. If this is denied, rlimit is
cleared.

• dyntransition
Do dynamic domain transition.

• setcurrent
Set target domain of dynamic domain transition by writing /proc/self/current.

• execmem, execstack, execheap
These are useful in combination with Exec Shield[6]. These restrict Exec
Shield to be disabled. For more, see Stephen Smalley’s post to SELinux
Mailing List4.

3.9 Object class security

Object class security is operations related to query security server 5, changing
SELinux internal parameters and managing SELinux. The meaning are found
by analyzing selinuxfs.c.

• compute av
Query security server about access is denied or granted, by writing /selinux/access.

4http://marc.theaimsgroup.com/?l=selinux&m=113440812327410&w=2
5Security Server a component of SELinux which makes access control decision based on

policy

21

• compute create
Query security server about label transision rule, by writing /selinux/create.

• compute member
Query security server about polyinstantiation[9] membership decision, by
writing /selinux/member.

• check context
Query security server about whether security context is valid, by writing
/selinux/context.

• load policy
Load policy file to kernel.

• compute relabel
Query security server about relabel based on type change TE rule. type change
is a rule to help application to relabel object such as tty device.

• compute user
Query security server about users that a context can reach, by writing
/selinux/user. Changing user identity is restricted in policy by constraints.
This is used programs who change SELinux user identity such as login and
ssh.

• setenforce
Switch enforcing/permissive mode.

• setbool
Change boolean parameter of policy.

• setsecparam
Configure avc parameter by writing /selinux/avc.

• setcheckreqprot
Configure behavior of permission execmem, execmod and execheap via
/selinux/checkreqprot 6

3.10 Object class system

In object class system, misc permissions related to system are defined.

• ipc info
Get information about IPC object. This is to get system-wide IPC param-
eter, not information specific to a IPC object. An example of system-wide
IPC information is segment size of shared-memory. More precisely, this
controls usage of option IPC INFO, SHM INFO, SEM INFO, MSG INFO
in shmctl,semctl,msgctl system call.

6By writing 0 or 1 /selinux/checkreqprot, behavior of execmem, execmod and execheap
can be configured.

22

• syslog read
Read kernel message by syslog(2)(option 3).

• syslog console
Control output of kernel message to console by syslog(2)(option 6,7,8).

• syslog mod
Clear kernel message buffer by syslog(2)(option 0,1,2,4,5).

Acknoledgements

Discussion on NSA’s SELinux list, especially Stephen Smalley’s comment was
helpful to analyze what access vectors are unused.

References

[1] SELinux Policy Editor, URL=http://seedit.sourceforge.net/

[2] Stephen Smalley, Implementing SELinux as a Linux Secuity Module,
URL=http://www.nsa.gov/selinux/papers

[3] An Overview of Object Classes and Permissions, Tresys Technology,
URL=http://tresys.com/selinux/obj perms help.shtml

[4] Linux Cross-Reference, URL=http://lxr.linux.no/

[5] Stephen Smalley, Configuring the SELinux Policy,
URL=http://www.nsa.gov/selinux/info/docs.cfm

[6] Arjan van de Ven, New Security Enhancements in Redhat Enterprize Linux,
URL=http://www.redhat.com/f/pdf/rhel/WHP0006US Execshield.pdf

[7] Linux manpage auditd, auditctl, ausearch

[8] Controlled Access Protection Profile URL=http://niap.nist.gov/cc-
scheme/pp/PP CAPP V1.d.pdf

[9] SELinux Mailing List archive, URL=http://www.nsa.gov/selinux/list-
archive/0505/11351.cfm

23

